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Abstract
The phase spaces of the two- and three-frequency sine-Gordon models are
examined in the framework of the truncated conformal space approach. The
focus is mainly on a tricritical point in the phase space of the three-frequency
model. We give substantial evidence that this point exists. We also find the
critical line in the phase space and present TCSA data showing the change of
the spectrum on the critical line as the tricritical endpoint is approached. We
find a few points of the line of first-order transition as well.

PACS numbers: 64.60.Kw, 11.10.Kk

1. Introduction

The sine-Gordon model in (1 + 1) dimensions attracted interest a long time ago for the reason
that it appears in several areas of physics; nevertheless, it is an integrable field theory that can
be used to study non-perturbative quantum field theory phenomena. The areas of application
include statistical mechanics of one-dimensional quantum spin chains and nonlinear optics
among many others—see the introduction of [1] for a representative list with references.

In the present paper we investigate a non-integrable extension of the sine-Gordon model
called the multi-frequency sine-Gordon model, in which the scalar potential consists of several
cosine terms with different frequencies. It is suggested in [1] that this model can be used to
give a more refined approximation to some of the physical situations where the ordinary sine-
Gordon model can be used. A feature of the multi-frequency model that is new compared to
the usual sine-Gordon model is—apart from non-integrability—that phase transition can occur

1 Until 31 October 2004.
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as the coupling constants are tuned. We concentrate our attention on this property. It should
be noted that such a phase transition is related to the evolution of the particle spectrum of the
theory as the coupling constants vary, and we shall use the massgap and other characteristics
of the energy spectrum as order parameter.

Our investigation is a continuation of the work done on the double-frequency case in [3].
We use the truncated conformal space approach (TCSA), which is a non-perturbative numerical
method to compute the lowest levels of the spectrum of the Hamiltonian operator of perturbed
conformal field theories in finite volume. The applicability and reliability of this method
was thoroughly investigated in [3], and it was shown that the existence, nature and location
of the phase transition can be established by this method, although rather a large number of
dimensions are needed for satisfactory precision. In particular, the existence and location of
an Ising-type transition was established in the double-frequency model (DSG) for the ratio
1/2 of the frequencies, verifying a prediction by [1] based on perturbation theory and classical
arguments. We extend these investigations to the ratio 1/3 and to the three-frequency model
(at the ratio 1/2/3 of the frequencies), in which a tricritical point and first-order transition
are expected to be found. The numerical nature of the TCSA makes it necessary to choose
specific values for the frequencies.

After introducing the multi-frequency sine-Gordon model and describing its basic
properties in section 2, we briefly review the TCSA framework for the model (which is the
framework described in [3] adapted to the multi-frequency model) in section 3. In section 4
we give a description of the phase structure of the classical two- and three-frequency model,
which serves as a reference for the investigations in quantum theory. The n-frequency case is
also considered briefly. Exact and elementary analytic methods can be applied to the classical
case, and the results are more general than in the quantum case. Section 5 is devoted to
theoretical considerations on the signatures of first- and second-order phase transitions in the
framework of perturbed conformal field theory in finite volume. Most of these considerations,
which are necessary for the evaluation of the TCSA data, can also be found in [3]. Finally,
in sections 6 and 7 we present the results we obtained by TCSA on the phase structure of the
two- and three-frequency model, which are the main results in the paper. A summary of the
results and conclusions is given in section 8.

2. The multi-frequency sine-Gordon model

2.1. The definition and basic properties of the model

The action of the multi-frequency sine-Gordon model (MSG) is

AMSG =
∫

dt

∫
dx

(
1

2
∂µ�∂µ� − V (�)

)
,

where

V (�) =
n∑

i=1

µi cos(βi� + δi)

is the potential, which contains n cosine terms. � is a real scalar field defined on the two-
dimensional Minkowski space R

1+1, βi ∈ R are the frequencies, βi �= βj if i �= j, µi are the
coupling constants (of dimension mass2 at the classical level) and δi ∈ R are the phases in the
terms of the potential.

Two cases can be distinguished according to the periodicity properties of the potential.
The first one is the rational case, when V (�) is a trigonometric polynomial: the ratios of the
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frequencies βi are rational and the potential is periodic. Let the period of the potential be 2πr

in this case. The target space of the field � can be compactified:

� ≡ � + 2krπ,

where k ∈ N can be chosen arbitrarily. The model obtained in this way is called the k-folded
MSG. The well-known classical sine-Gordon model corresponds to n = 1, k = 1.

The other case is the irrational one, when the potential is not periodic and no such folding
can be made. The irrational case is much more complicated than the rational one, so we restrict
our attention to the rational case in the present paper. We remark here only that although V (�)

always has a finite infimum, it does not necessarily admit an absolute minimum. The potential
V (�) can always be written uniquely as a sum V (�) = V1(�) + V2(�) + · · · + Vk(�), where
the terms V1, . . . , Vk are periodic but any sum of any of these terms is not periodic. V (�) has
an absolute minimum if and only if V1(�), . . . , Vk(�) have a common absolute minimum.
This occurs for special choice of the δi , if the values of βi are given. In particular, if βi/βj are
irrational for all i �= j and µi < 0 for all i, then V (�) has a absolute minimum if and only if
δi

βi
− δj

βj
= 2πbi

βi
− 2πbj

βj
is satisfied with some numbers bi ∈ Z, which is equivalent to the case

δi = 0 for all i. See [1, 3] for further remarks on the irrational case.
At the quantum level the theory can be regarded as a perturbed conformal field theory:

AMSG = ACFT + Apert,

where

ACFT =
∫

dt

∫
dx

1

2
∂µ�∂µ�,

which is the action of the free scalar particle of zero mass, and

Apert =
∫

dt

∫
dx(−V (�)) = −1

2

∫
dt

∫
dx

n∑
i=1

(µi eiδi Vβi
+ µi e−iδi V−βi

),

where Vω denotes the vertex operator

Vω =: eiω� :,

which is a primary field with conformal dimensions

�±
ω = �ω = ω2

8π
in the unperturbed (conformal) field theory. The upper index ± corresponds to the left/right
conformal algebra and : : denotes the conformal normal ordering. The dimensions of the
couplings at the quantum level are

[µi] = (mass)2−2�i , �i ≡ �βi
.

The perturbing operators are relevant only if

β2
i < 8π, (1)

we restrict ourselves to this case. We also assume that

β2
i < 4π,

which is a necessary and sufficient condition for the model to be free from ultraviolet
divergencies in the perturbed conformal field theory framework [1, 3, 8].

The model has a massgap in general, and it is clear that phase transitions occur in the
classical version of the model as the coupling constants are tuned (assuming that n > 1). It
is also expected that there are topologically charged solutions/states in the model [1]. In the
present paper we shall investigate the sector with zero topological charge, which is sufficient
for our purposes. We also restrict ourselves to 1-folded models (k = 1), as it is natural to
expect that in infinite volume a folding number k �= 1 results simply in a k-fold multiplication
of the spectrum corresponding to k = 1.
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3. The truncated conformal space approach

The matrix elements of the total Hamiltonian operator H = HCFT + Hpert can be calculated
explicitly (and exactly) between any two elements of the Hilbert space HCFT of the conformal
field theory. Restricting to a finite-dimensional subspace H0 of HCFT by introducing an upper
conformal energy cutoff H becomes a finite matrix, which can be diagonalized numerically
to get an approximation of the spectrum. As this description shows, TCSA is a variational
method.

The k-folded free boson as a conformal field theory contains the following primary fields:

Vp,p̄(z, z̄) =: exp[ipφCFT(z) + ip̄φ̄CFT(z̄)] :

with conformal dimensions

�+ = p2

8π
, �− = p̄2

8π
,

where

p = n

r
+ 2πrm, p̄ = n

r
− 2πrm, n,m ∈ Z,

�CFT(x, t) = φCFT(x − t) + φ̄CFT(x + t).

HCFT is spanned by the states |p, p̄〉 = limz,z̄→0 Vp,p̄(z, z̄)|0〉 (|0, 0〉 ≡ |0〉) and
an1 . . . ām1...|p, p̄〉, where ani

and āmi
are creating operators of Fourier modes on the ‘conformal

plane’. The conformal generators L0 and L̄0 are diagonal in this basis. The basis of H0 is
obtained by taking those elements |v〉 of the basis above which satisfy the truncation condition

〈v| L
2π

HCFT|v〉
〈v||v〉 < ecut.

ecut is the dimensionless upper conformal energy cutoff and L is the volume of space. We
restrict ourselves to the sector with zero topological charge (p = p̄), this being the sector
containing the ground state(s) and the relevant information for the problem treated in this
work. In the sector containing the ground state(s) the Lorentz spin of all the states is also zero,
so we also impose the condition (L0 − L̄0)|v〉 = 0. (The operator L0 − L̄0 commutes with H
and HCFT as well.) We remark that ecut serves as an ultraviolet cutoff.

The matrix elements of H between two elements |a〉 and |b〉 of the basis of HCFT above
are given by(

H

M

)
ab

= 2π

l

(
L0 + L̄0 − c

12

)
ab

+
2π

l

n∑
j=1

sgn(µj )κj

(
Mj

M

)xj

× lxj

2(2π)xj −1 eiδj (Vβj ,βj
(1, 1))abδ�a−�̄a,�b−�̄b

+
2π

l

n∑
j=1

sgn(µj )κj

(
Mj

M

)xj

× lxj

2(2π)xj −1 e−iδj (V−βj ,−βj
(1, 1))abδ�a−�̄a,�b−�̄b

, (2)

where M is a mass scale of the theory given below, l = LM is the dimensionless volume,
xj = 2 − 2�j,�j ≡ �βj

; �a, �̄a,�b, �̄b are the conformal weights of the states |a〉 and
|b〉, c is the central charge of the conformal theory (c = 1 in the present case), and we have
made a replacement corresponding to

|µj | = κjM
xj

j .

The ‘interpolating’ mass scale M is

M =
∑

j

ηjMj ,
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where

ηj = |µj |1/xj∑
i |µi |1/xi

(3)

are the dimensionless coupling constants (of which only n − 1 are independent). Equation (3)
implies that ηj ∈ [0, 1],

∑
j ηj = 1. M depends smoothly on the ηj . The precise expression

for κ is not essential for our problem, we need only that κ depends on � only and that it is
dimensionless. Following [3] we used the formula of [7]:

κj = 2�(�j)

π�(1 − �j)


√

π�
(

1
xj

)
2�

(�j

xj

)



xj

.

Formula (2) is written in terms of dimensionless quantities, and the volume (l) dependence
of H/M is also explicit. It is clear from (2) that TCSA gives an exact result if l → 0 (assuming
(1)) and this limit of the theory is the conformal theory (the massless free boson), and the
accuracy of the TCSA spectrum decreases at fixed ecut as l → ∞. For very large values of l
the l-dependence of the spectrum of the TCSA Hamiltonian is power-like, as it is determined
directly by the lxj −1 coefficients in (2). The TCSA Hamiltonian cannot be considered as good
approximation for these values of l. Increasing the value of ecut generally increases accuracy,
and the TCSA is expected to give better approximation for the lower lying energy levels than
for the higher ones.

We denote the (dimensionless) energy levels of H/M in volume l by ei(l), i = 0, 1, 2, . . . ,

and e0 � e1 � e2 � · · · if not stated otherwise. We shall draw conclusions about the spectrum
at l = ∞ from the behaviour of the functions ei(l) for low values of i and moderately large
values of l.

We refer to [3–5] for more details on the TCSA framework.

4. Phase structure in the classical limit

4.1. Phase structure of the two-frequency model in the classical limit

The Lagrangian density takes the following form in the two-frequency case:

L = 1
2∂µ�∂µ� − µ cos(β�) − λ cos(α� + δ),

where
β

α
= n

m
�= 1,

n and m are coprimes (and the folding number equals 1).

Proposition 1. Assume that µ, λ �= 0. Then the following three cases can be distinguished:

(a) If the function V (�) is symmetric with respect to the reflection � 	→ 2�0 − �, where
�0 is a suitable constant, and n,m > 1, then V has two absolute minima, which are
mapped into each other by the reflection. We remark that it depends on the value of δ

whether V has this symmetry or not, and it is easy to give a criterion for the existence of
this symmetry in terms of n,m and δ.

(b) If V is symmetric with respect to a reflection as in case (a), but n = 1 or m = 1, then
V has one or two absolute minima depending on the values of µ and λ. In this case,
assuming that n = 1, V can be brought to the form

V (�) = −|µ| cos(β�) + |λ| cos(mβ�)
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by an appropriate shift of �. V has two absolute minima if |λ/µ| > 1/m2, and one
absolute minimum if |λ/µ| � 1/m2. The two absolute minima are mapped into each other
by the reflection. The second derivative of V is nonzero at the minima if |λ/µ| �= 1/m2,
but it is zero if |λ/µ| = 1/m2. In the latter case, the fourth derivative of V at the minimum
is nonzero. The two minima of V merge and the value of the second derivatives of V at
the two minima tends to 0 as |λ/µ| approaches 1/m2 from above.

(c) If V does not satisfy the requirements of (a) and (b), then V has a single absolute minimum.

We omit the proof of this proposition, which is elementary, although long and not
completely trivial because of the arbitrariness of n and m.

If µ or λ equals 0, then V is periodic and has m or n absolute minima, respectively. See
[4] for a detailed investigation of these (integrable) limiting cases.

The phases of the classical model are determined by the behaviour of absolute minima of
V (�) as the values of the coupling constants vary. In particular, proposition 1 implies that the
phase structure of the two-frequency model is the following:

The model exhibits an Ising-type second-order phase transition at the critical value

ηc = m

1 + m

of the dimensionless coupling constant η = √|µ|/(√|µ| +
√|λ|) if n = 1 and V has the Z2-

symmetry introduced above. This critical point separates two massive phases with unbroken
and spontaneously broken Z2-symmetry. Equivalent statement can be made if m = 1. If V

is not symmetric, then there is only one massive phase with nondegenerate ground state. If
m, n �= 1 and V is symmetric, then there is one massive phase with doubly degenerate ground
state (i.e. the reflection symmetry is spontaneously broken). In the limiting cases η = 0
and η = 1 the model is massive and has spontaneously (and completely) broken Zn or Zm

symmetry.

4.2. Phase structure of the three-frequency model in the classical limit

A complete description of the behaviour of the absolute minima of V for all values of the
parameters becomes excessively difficult in the three- and higher-frequency cases, so we
restrict our attention to particular values. The potential in the three-frequency case is

V (�) = µ1 cos(β1�) + µ2 cos(β2� + δ2) + µ3 cos(β3� + δ3). (4)

We choose the frequency ratios 3:2:1, i.e.

β1 = β, β2 = 2
3β, β3 = 1

3β.

This three-frequency model has a tricritical point if and only if δ2 = δ3 = 0 (and also in a
few equivalent cases), in this case V is symmetric with respect to the reflection � 	→ −�. At
the tricritical point the absolute minimum of V can be located only at 0 or π . The two cases
are equivalent, we consider the case when the location of the absolute minimum is 0. The
tricritical point in this case is located at

µ1

µ2
= −1

6
,

µ1

µ3
= 1

15
.

At this point V (6)(0) �= 0. (The upper index (6) denotes the sixth derivative with respect to �.)
V (6)(0) > 0 requires µ1, µ3 < 0 and µ2 > 0. We restrict ourselves to this domain and to the
values δ2 = δ3 = 0.

The phase diagram is shown in figure 1. The points of the diagram correspond to the
values of the pair (η1, η2) of dimensionless parameters. The allowed values constitute the left
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Figure 1. Phase diagram of the classical three-frequency sine-Gordon model at β1/β2/β3 =
3/2/1, δ1 = δ2 = δ3 = 0, µ1, µ3 < 0 and µ2 > 0. The crosses and the square correspond to
certain quantum theory values described in section 7.

lower triangle, the straight line joining (0, 1) and (1, 0) corresponds to η3 = 0. The tricritical
point is denoted by t, it is located at(

1

1 +
√

6 +
√

15
,

√
6

1 +
√

6 +
√

15

)
≈ (0.1365, 0.3345).

At t V has one single and absolute minimum (at � = 0). Phase transition occurs when lines 5
and 3 shown in the phase diagram are crossed. Second-order Ising-type phase transition occurs
on 5 and first-order phase transition occurs on 3. The domain A ∪ B ∪ F corresponds to a
massive Z2-symmetric phase (with unique ground state). The domain E ∪ C corresponds to a
massive phase with spontaneously broken Z2-symmetry. Characteristic shapes of the potential
in the various domains and on the various lines of the phase diagram can be seen in figure 2.
Data applying to the quantum case are also shown in figure 1, they will be explained in
subsequent sections.

4.3. n-frequency model in the classical limit

Let us take the n-frequency model with βi = iβ, i = 1, . . . , n, and δi = 0. In this case there
exist unique values of µi/µ1, i = 2, . . . , n so that V (x) has a single global minimum at x = 0
and has no other local minima, and V ′′(0) = 0, V ′′′′(0) = 0, . . . , V (2n)(0) = 0 also hold.
The values of µi/µ1 are determined by the latter equations. The point corresponding to these
values of µi/µ1 is an n-fold multicritical point in the phase space. The neighbourhood of this
multicritical point contains m-fold multicritical points for any integer 0 < m < n.

These statements can be proved using well-known properties of analytic functions and
the fact that V is a trigonometric polynomial. We omit the details of the proof.
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Figure 2. Characteristic shapes of the potential.

5. Signatures of first- and second-order phase transitions in finite volume

The considerations in this section apply to quantum field theory.
The behaviour of the spectrum is governed by the l → 0 limiting conformal field theory for

small values of l, so en(l) − e0(l) ∼ 1/l. Massive phases in infinite volume are characterized
by the existence of a massgap and the behaviour liml→∞(en(l) − e0(l)) = Cn, where Cn � 0
are constants. Cn = 0 if 0 � n � d and Cn > 0 if n > d, if the ground state has d-fold
degeneracy in infinite volume. In a phase with spontaneously broken symmetry the spectrum
is degenerate in the l → ∞ limit, in finite volume the degeneracy is lifted (at least partially)
due to tunnelling effects. The resulting energy split between the degenerate vacua vanishes
exponentially as l → ∞.

At the critical points (in infinite volume) the massgap vanishes and the Hilbert space
contains a sector that corresponds to the conformal field theory specifying the universality
class of the critical point. We consider this sector in the following discussion. In finite but large
volume near the critical point this sector of the theory can be regarded as the l → ∞ limiting
conformal theory perturbed by some irrelevant and relevant operators. The corresponding
TCSA Hamiltonian takes the (generic) form

H = 2π

L


(L0)IR + (L̄0)IR − cIR

12
+

∑
ψ

gψL2−2�ψ

(2π)1−2�ψ
ψ(1, 1)


 , (5)

where the ψ are the perturbing fields. This picture gives the following volume dependence of
energy levels (in the first order of conformal perturbation theory):

e�(l) − e0(l) = 2π

l

(
�+

IR,� + �−
IR,�

)
+

∑
ψ

A
ψ

�l1−2�ψ , (6)
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where �+
IR,� and �−

IR,� are the conformal weights of the state � in the l → ∞ limiting

CFT, A
ψ

� are constants that also depend on the particular energy eigenstate �. The presence
of irrelevant perturbations (1 − 2�ψ < −1) is due to the finiteness of the volume, whereas
the presence of the relevant perturbations (1 − 2�ψ > −1) is caused by the deviation of the
control parameters from the critical value and by the UV cutoff.

The location of the critical points can be determined using the criterion of vanishing
massgap. A more precise method that also allows the determination of the universality class
of the critical point (i.e. the l → ∞ limiting CFT) is the following: we make an assumption
that the critical point is in a certain universality class. This assumption predicts the set of ψ ,
the values of �+

IR,� and �−
IR,� , and the values of the �ψ in (6). We take leading terms of the

series on the rhs of (6) and determine the value of the
(
�+

IR,� +�−
IR,�

)
and of the A

ψ

� by fitting

to the TCSA energy data. The magnitude of the A
ψ

� corresponding to the relevant perturbations
measures the deviation from the critical point, so if the assumption on the universality class is
right, then by tuning the coupling constants one should be able to find a (critical) value of the
control parameter at which these A

ψ

� are small, the TCSA data are described well by (6) (terms
from higher orders of perturbation theory can be included if necessary) in a reasonably large
interval of the values of l, and the values of the

(
�+

IR,� + �IR,�

)
obtained from the TCSA

data agree with the assumption with good precision. The interval where (6) describes the
TCSA data well is called the scaling region. This region may be (and in fact is) different for
different energy levels. We remark that it is also possible to make a theoretical prediction for
e0(l), which allows us to extract cIR from the TCSA data for e0(l) in principle [3]. However,
experience [3] shows that the accuracy of the TCSA data is not sufficient to determine cIR

precisely in this way, so we do not attempt to extract cIR directly from the TCSA data in this
paper.

In the classical case a first-order phase transition occurs when the absolute minimum of the
potential becomes a relative minimum and a previously relative minimum becomes absolute.
In the quantum case this phase transition is characterized by the presence of ‘runaway’ energy
levels with asymptotic behaviour e(l) ∼ cl for large l in the neighbourhood of the transition
point, where c is a constant that tends to zero as the transition point is approached. The
multiplicity of the ground state also changes as the transition point is passed if the two phases
have different symmetry properties. We remark that ‘runaway’ energy levels are present in
general whenever a model has unstable vacua.

6. The phase diagram of the two-frequency model in the case α
β

= 1
3 , δ = π

3

We assume that λ,µ > 0, and use the parameter

η̃ = λxβ

µxα + λxβ

instead of η in this case to conform with [3].
The classical model with α/β = 1

3 , δ = π
3 exhibits an Ising-type phase transition at

η̃ = 34/(1 + 34).
Considering the quantum case we proceed along the lines of [3] in this section. The

numerical nature of the TCSA makes it necessary to choose a finite number of values for β

and l at which calculations are done. One should choose as large values for l as possible, the
l → ∞ limit being of interest. However, the accuracy of TCSA decreases as l grows. The
accuracy can be improved by taking higher ecut, but this increases the size of TCSA Hamiltonian
and the time needed for diagonalization. Experience shows that accuracy decreases for values
β near to

√
4π (this is the value where UV divergences appear in conformal perturbation
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Figure 3. Typical shape of V (�) in the broken and in the unbroken symmetry phase.

theory) although the speed of convergence of the spectrum to the l → ∞ asymptotic values
increases, and the speed of convergence becomes very low for values of β near to 0. Taking
these properties of the TCSA into consideration and following [3] we performed calculations
at the values β = 8

√
π/7, 4

√
π/3, 8

√
π/5. We also note that the accuracy of the TCSA

spectra is severely decreased if V has several (local) minima.
Figures 3(a) and (b) show the shape of the classical potential in the phases with broken

and unbroken Z2-symmetry, respectively. Figures 4(a)–(g) show TCSA spectra obtained at
β = 4

√
π/3 at various values of η̃. The TCSA Hilbert space had dimension 3700, the

first 12 energy levels are shown in the figures. The highest values of l are chosen so that the
truncation error still be small (the massgap remain constant). However, the effect of truncation
is perceptible in figure 4(b) for instance. It can be seen that in the domain η̃ < 0.92 the ground
states and the first massive states are doubly degenerate. (They are triply degenerate at η̃ = 0.)
‘Runaway’ energy levels (of constant slope) corresponding to the single local minimum of
the potential can also be seen (especially clearly in figure 4(b)). In the domain η̃ > 0.98 the
spectra are massive, but the ground state and the first massive state are nondegenerate. In
the intermediate domain (especially for η̃ ∼ 0.95) the structure of the spectrum changes, no
massgap and degeneracy can clearly be seen. We obtained similar spectra at β = 8

√
π/5 and

β = 8
√

π/7 as well. As we did not see ‘runaway’ energy levels that would have signalled
first-order phase transition in the transitional domain of η̃ we analyzed the data by looking for
a second-order Ising-type phase transition at some critical values η̃c(β).

The Ising model contains three primary fields: the identity with weights (0, 0), the ε with
weights (1/2, 1/2) and σ with weights (1/16, 1/16). Since the DSG model exhibits the Z2-
symmetry for all values of η̃, the Z2-odd σ and its descendants cannot appear as perturbations
in Hamiltonian (5). The only relevant field compatible with the Z2-symmetry is ε (the
contribution of the identity cancels in the relative energy levels). The presence of a relevant
perturbation ε in the Hamiltonian leads to a correction B� or B� + C�l to e�(l) − e0(l). The
term C�l is of second order in perturbed CFT. The leading irrelevant perturbation (compatible
with the Z2-symmetry) is the first descendant of ε, this gives a correction A�l−2 to e�(l)−e0(l)

(in first order). Thus we expect that in a large but finite volume range, near η̃c(β), the volume
dependence of the energy levels is described well by the formula

ei(l) − e0(l) = 2π

l
Di + Ail

−2 + Bi + Cil. (7)

We fitted this function to the lowest energy levels obtained by TCSA and determined the ‘best’
η̃c(β) value by tuning η̃ in the transition region and looking for whether e2(l)−e0(l) continues
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Figure 4. Change of the spectrum as η̃ varies from 0 to 1 at β = 4
√

π/3. The first 12 energy
levels (including the ground level) relative to the ground level are shown as functions of l.

to decrease along the complete l range (liml→∞(e2(l) − e0(l)) = 0 only at η̃c(β)), and Bi

and Ci are as small as possible. The result is shown in table 1. The fitting was done in the
volume ranges l = 10 − 105, l = 55 − 105; l = 10 − 140, l = 100 − 190; l = 20 − 200,
l = 150 − 390. The errors presented come from the fitting process and do not contain the
truncation errors which are generally much larger.

The first two energy levels above the ground state correspond to the operators σ and ε in
the Ising model. These operators have conformal weights �± = 1/16 and �± = 1/2, so the
exact values for D1 and D2 are

D1 = 0.125, D2 = 1.

The results of the fits agree quite well with this prediction.
The TCSA data obtained at the estimated values of η̃c using a truncated space with

dimensions 4800, 5300 and 5100 are shown in figure 5. These figures show energy levels
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Figure 5. TCSA spectra as functions of l at the estimated critical values of η̃.

Table 1. The results of fitting (7) to the first two excited levels for various values of β at the
estimated critical value of η̃.

State Di Ai Bi Ci

β = 8
√

π/5, η̃ = 0.944
i = 1 0.138 ± 0.0005 −2.0 ± 0.02 −0.0046 ± 0.0001 2.98 × 10−5 ± 9 × 10−7

i = 2 1.00 ± 0.01 −74 ± 2 0.004 ± 0.001 9 × 10−6 ± 4 × 10−6

β = 4
√

π/3, η̃ = 0.955
i = 1 0.125 ± 0.001 −2.63 ± 0.025 −0.0002 ± 0.0001 3 × 10−7 ± 1 × 10−6

i = 2 1.04 ± 0.02 −152 ± 6 0.0014 ± 0.0009 −1.5 × 10−5 ± 2 × 10−6

β = 8
√

π/7, η̃ = 0.961
i = 1 0.125 ± 0.001 −4.4 ± 0.1 −0.0009 ± 0.0001 4 × 10−7 ± 5 × 10−7

i = 2 1.00 ± 0.02 −252 ± 9 0.0002 ± 0.0004 4.3 × 10−6 ± 6 × 10−7

multiplied by l/(2π) as functions of l. The constant lines corresponding to the Ising model
values of Di are also shown in these figures.
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Figure 6. The phase diagram of the two-frequency model at α/β = 1/2 and α/β = 1/3.

To summarize, evaluating the TCSA data we found that the phase transition is second
order and Ising type at the values of β chosen. This statement is true up to the precision of the
TCSA data, which is about 10−2–10−3 for the values of the volume used. We remark that it is
not possible to distinguish a second-order transition from a (very) weakly first-order transition
by TCSA.

For values of β near 0 we expect second-order phase transition, because the model is
semi-classical in this region and so the correction to the classical potential in the effective
potential is expected to be small.

A correction to the classical potential in the effective potential of frequency 2β/3 is
possible in principle. A correction with this frequency is—unlike in the case of α/β = 1/2—
relevant for any values of β, and it can be verified by elementary calculation that it may change
the order of the transition outside the semiclassical region if its coefficient is sufficiently large
(see also [2, 3]). However, the accuracy of TCSA did not allow us to perform calculations at
values about β2 > 8π/3 and to check the nature of phase transition in this domain.

The phase diagram in the (β, η̃) plane based on the data obtained by TCSA can be seen in
figure 6. We took into consideration that η̃c(0) = 34/(1 + 34) ≈ 0.988 is exactly known β = 0
being the classical limit, and at β = √

8π the term with frequency β in the potential becomes
irrelevant and thus for β → √

8π the other term and so the symmetric phase is expected to
dominate, so limβ→√

8π η̃c(β) = 0. The figure shows the three values of η̃c obtained from the

TCSA data and the two values at β = 0 and β = √
8π . The continuous line is obtained by

fitting an even polynomial (note that η̃c(β) = η̃c(−β)) to these values and is shown in order
to get an idea of the phase transition line. The model is in the symmetric phase above the
line and in the phase with broken symmetry below the line. The data obtained by [3] for the
α/β = 1/2 case are also shown, the dashed line is fitted to these data.

7. Phase diagram of the three-frequency model

We take the same values of the parameters of (4) as in section 4.2, namely β1 = β, β2 =
2
3β, β3 = 1

3β, δ2 = δ3 = 0, µ1, µ3 < 0, µ2 > 0, and investigate the quantum model in this
case.
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Table 2. The results of fitting (10) to the first two excited levels at the estimated tricritical point.

State Di Ai Bi

β = 8
√

π/7, η1 = 0.163, η2 = 0.3518
i = 1 0.074 ± 0.004 −0.0060 ± 0.001 2.8 × 10−5 ± 5 × 10−6

i = 2 0.196 ± 0.01 −0.006 ± 0.002 2.4 × 10−5 ± 6 × 10−6

7.1. The tricritical point

The tricritical Ising model contains six primary fields with the following conformal weights:

(0, 0),

(
1

10
,

1

10

)
,

(
3

5
,

3

5

)
,

(
3

2
,

3

2

)
, (8)

and (
3

80
,

3

80

)
,

(
7

16
,

7

16

)
. (9)

The fields corresponding to (8) are even and those corresponding to (9) are odd with respect to
the parity, so only the fields corresponding to (8) and their descendants can contribute to the
Hamiltonian (5). Thus the volume dependence of the energy levels near the tricritical point
should be described well for large l by

e�(l) − e0(l) = 2π

l

(
�+

IR,� + �−
IR,�

)
+ A�l−0.2 + B�l0.8 + · · · ,

where only the leading terms are kept. Searching for the tricritical point we fitted the function

2π

l
Di + Ail

−0.2 + Bil
0.8 (10)

to the data obtained by TCSA for ei(l) − e0(l) near the estimated location of the tricritical
point. Best fits are shown in table 2. (The errors presented come from the fitting process and
do not contain the truncation errors which are generally much larger.) The fitting was done
in the volume ranges l = 50 − 230, l = 110 − 230, the dimension of the truncated Hilbert
space was 13 600. The results of the fitting support the existence of a tricritical point located
(approximately) at η1 = 0.163, η2 = 0.3518. The exact values of D1 and D2 in the tricritical
Ising model are

D1 = 0.075, D2 = 0.2.

The numerical results agree quite well with this prediction. The TCSA spectrum obtained at
the tricritical point is shown in figure 7. The values of Di predicted by the tricritical Ising
model are also shown in the figure. The dashed lines and + signs are used for odd parity states,
the continuous lines and × signs are used for even parity states.

We used a modified version of the TCSA code exploiting the Z2-symmetry of the model
by taking even and odd basis vectors and taking the Hamiltonian on the even and odd subspaces
separately, which reduces the total time needed for diagonalization and thus allows us to take
higher ecut values.

The TCSA data for the first two excited states fit quite well to the prediction of the tricritical
Ising model, the energy levels of the next two excited states also show correspondence with
the prediction. Clear correspondence cannot be seen for higher levels.
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√

π/7, η1 = 0.163,
η2 = 0.3518.

Table 3. Points of the critical line found by TCSA.

η1 η2 η1 η2 η1 η2 η1 η2

0.01 0.354 0.06 0.355 0.11 0.359 0.16 0.357
0.02 0.354 0.07 0.3555 0.12 0.36 0.163 0.3565
0.03 0.354 0.08 0.356 0.13 0.36
0.04 0.354 0.09 0.3575 0.14 0.3595
0.05 0.354 0.1 0.3585 0.15 0.359

7.2. The critical line

The points of the critical line we found using TCSA are listed in table 3. The value of η1

was chosen and fixed in advance, and then η2 was estimated in the same way as described in
section 6. These points are also marked in figure 1 by crosses. The dimension of the truncated
Hilbert space was 10 269 in these calculations, which corresponded to ecut = 17. The value of
β was 8

√
π/5. Figures 8(a)–(l) show the TCSA spectra (especially the lowest lying energy

levels) obtained at these points as well as the values of Di corresponding to both the critical
and the tricritical Ising model. Crosses are used for odd parity states, squares are used for
even parity states. It can be seen that moving on the critical line in the phase space towards
the tricritical endpoint the finite volume spectrum changes continuously. In the η1 < 0.11
domain the spectra (especially the first two levels) correspond clearly to phase transitions in
the Ising universality class. At η1 = 0.11 the first excited level already appears to correspond
to the prediction of the tricritical Ising model, whereas the second excited level still has the
behaviour predicted by the Ising model. It would be very interesting to know the large volume
behaviour (and infinite volume limit) of the first excited level, but the precision of TCSA does
not allow us to determine it. What we can see is that there is no sign in the TCSA data that
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Figure 8. [ei (l)− e0(l)] × l/2π as functions of l obtained by TCSA at β = 8
√

π/5 and at various
points (η1, η2) lying on the critical line, the predictions of the critical Ising model (continuous
horizontal lines) for Di , the predictions of the tricritical Ising model (dashed horizontal lines)
for Di .

the first excited level follows the predictions of the Ising model in the large volume limit. In
the domain 0.11 � η1 � 0.16 there is a spectacular rearrangement of the higher energy levels
(already observable in the η1 < 0.11 domain), and at η1 = 0.16 the second excited level also
appears to correspond to the prediction of the tricritical Ising model. We regard therefore the
point η1 = 0.16, η2 = 0.357 to be the tricritical endpoint of the critical line, this point is
marked by a square in figure 1. (We did not aspire to determine the value of η1 more precisely
for this value of β.) Each figure shows the spectrum in the volume interval l = 0 . . . 200, and
for the large values l ≈ 200 the truncation error is always conspicuous.

Moreover, the value of l where the truncation errors become large gets smaller and smaller
as the tricritical point is approached, which corresponds to the fact that a tricritical point as
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Figure 8. (Continued.)

renormalization group fixed point is more repelling than an Ising-type one. Increasing η1

further the behaviour corresponding to the tricritical point would rapidly disappear from the
finite volume spectrum.

7.3. The line of first-order transition

Figures 9(a)–( j) show TCSA spectra obtained at η1 = 0.6 and at various values of η2 between
0.17 and 0.30. The energy levels are shown as compared to the lowest level. The dimension of
the truncated Hilbert space was 6597 in these calculations, which corresponded to ecut = 16.
The value of β was 8

√
π/5. Dashed lines are used for odd parity levels and continuous lines

for even parity levels.
At η2 = 0.17 (and also for η2 < 0.17) the ground state is unique for all values of l, whereas

doubly degenerate runaway levels can also be seen. At η2 = 0.19, however, the ground level is
doubly degenerate for small values of the volume but becomes nondegenerate in large volume,
i.e. there is a value of l where the doubly degenerate runaway level and the single level cross
each other. The slope of the runaway levels becomes smaller and smaller as η2 is increased,
and the crossing point also moves towards larger and larger values. At η2 = 0.3 the ground
state is already doubly degenerate for all values of l and nondegenerate runaway levels are
present. These features indicate that a first-order phase transition occurs at an intermediate
value of η2. The behaviour of the finite volume spectra around the transition point seen in
the figures implies that a precise determination of the transition point from the TCSA data
in a direct way would require precise data for large values of l. For this reason we did not
aspire to find many points of the line of first-order phase transition, we did TCSA calculations
only at η1 = 0.4 and η1 = 0.6, and we roughly estimated the location of the first-order phase
transition at these values. Our estimation based on the TCSA data is η2 = 0.30 and η2 = 0.21.
These points are also marked in figure 1 by crosses. Figures 9(a)–( j) show the first 20 levels
in the domain l = 0 . . . 200. Unfortunately the truncation effect is large in most of this domain
of l, however we expect that those qualitative features of the spectra which we allude to are
correct.
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Figure 9. [ei (l)−e0(l)], i = 0 . . . 19 as functions of l obtained by TCSA at β = 8
√

π/5, η1 = 0.6
and at various values of η2.

8. Conclusions

In this work we investigated selected special cases of the multi-frequency sine-Gordon theory,
especially the structure of their phase space, continuing the work begun in [3]. Concerning



A nonperturbative study of phase transitions in the multi-frequency sine-Gordon model 9649

the classical limit we found that the only possible phase transition in the (rational) two-
frequency case is a second-order Ising-type transition. The three-frequency model has some
new qualitative features compared to the two-frequency model: a tricritical point which is
at the end of a critical line can also be found, and first order transition is possible as well.
The phase space of the n-frequency model contains n-fold critical points, otherwise we do not
expect new qualitative features compared to the three-frequency model.

The numerical (TCSA) calculations in the quantum case yielded the following results:
we found the same type of phase transitions as in the classical case, in particular we were
able to determine the second-order Ising nature and the location of the phase transition in the
two-frequency model with good precision. Quantum corrections did not alter the nature of
the phase transition. The accuracy of the TCSA also allowed us to find the tricritical point in
the three-frequency case, which we regard the main result of the paper. This demanded
much more numerical work than the two-frequency model for the following reasons: the
two-frequency model has only one-dimensional phase space, whereas the phase space is
two-dimensional in the three-frequency model; and the tricritical point as a renormalization
group fixed point is more repelling than the Ising-type critical point, so we had to take larger
truncated space. Furthermore, we found several points of the critical line and observed how
the TCSA spectrum changes as the tricritical endpoint is approached. It would be interesting
to investigate this with considerably better precision. Although the focus was mainly on the
tricritical point, we also investigated the first-order phase transition in the three-frequency
model and found that the first-order nature can be established by TCSA, but the location of the
transition can be determined much less accurately than that of the second-order transition. We
expect that multicritical points in the universality classes of further elements of the discrete
unitary series could be found in the higher-frequency models, but increasing accuracy is
needed, because these multicritical points are more and more repelling. Finally, we remark
that the quantum corrections did not alter the nature of the phase transitions in any of the cases
we investigated, and in the classical and quantum theory the location of transition points is
almost the same. The investigation of the multi-frequency model with irrational frequency
ratios is still an open problem. We also remark that the particle content of the multi-frequency
sine-Gordon model could also be investigated by the method of semiclassical quantization [6].
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